超高速光纤通信系统<1> |
摘 要 本文介绍了目前超高速光纤通信系统的几种主要实现方式,探讨了各种方式的优点、关键技术和限制因素,并列举了一些超高速实验系统。 在低损耗传输窗口,光纤具有25 THz的带宽,其传输容量是非常巨大的。到90年代初,光纤通信系统的传输速率限制在几十Gbit/s,远远低于25 THz的容量,这是因为光信号的传输有两个重要的限制因素:损耗和色散。由于损耗的存在,必须每隔50~100 km对光信号进行中继放大;色散使光脉冲展宽,脉冲之间产生干扰,限制了码速率的提高。此外由于超高速信号的产生、传输、恢复的限制,单信道传输速率不可能很高。 实现超高速光纤通信主要有以下几种方式:光频域复用,光时域复用,采用特殊的光脉冲,采用特殊的编码方式使相同码元携带更多的信息。本文简单介绍这几种方式的基本原理、优点、关键技术及受限制因素。 1 频域复用?WDM(波分复用)、DWDM(密集波分复用) 、FDM(频分复用) 光频域复用就是使不同的光载波在频率上分开。WDM、DWDM、FDM三种传输方式在基本原理上是相同的,只是波长之间的间隔不同,因而有不同的结构特点。在80年代末期,采用FDM-相干检测的相干光通信一度成为研究的热点,但其苛刻的实现条件,如光源的稳频等使其难以在现有的器件水平下得到发展。自掺铒光纤放大器问世以来,光通信的格局发生了巨大变化。EDFA改变了传统的光-电-光中继方式,它可以同时放大一根光纤中的多路光信号,使光中继的成本大大降低,可使一根光纤中传输的信息量极大增加,解决了传输中的损耗问题。WDM中光波的波长间隔比较大,实现容易,因此迅速实用化。 2 光时域复用—OTDM OTDM(光时分复用)与电时分复用(ETDM)相似,只是将复用技术移到光频上。通过时分复用使光纤中的码速率极大提高。OTDM相对于WDM有很多优点,其频带利用率很高,由于WDM信道之间必须有一定的保护频带,使WDM系统的频带利用率不可能很高,而OTDM采用超短光脉冲,单信道最高速率可达640 Gbit/s,可以充分利用频带资源。由于传输只采用一个载波,OTDM系统可在光频上直接进行信号处理,控制管理非常方便。 3 特殊的脉冲—光孤子(Soliton) 孤立波或光孤子是一种在传输过程中形状和速度均不改变脉冲状的波,一些孤立波在相互碰撞后保持各自原来的形状和速度,好象是些粒子,所以也称孤立子。在光纤中,光孤立子的产生是光纤中的色散和非线性效应共同作用的结果。由于光孤子脉冲波形在传输过程中保持不变,减小了光纤色散对光纤传输速率及传输距离的限制,可以大大提高光纤通信的传输速率。同时,利用光孤子可以实现频分复用、时分复用及双向传输。也就是说以上讨论的WDM及OTDM技术中可以利用光孤子来传输。由SPM产生的相移和由色散产生的相移周期性地相互抵消,使脉冲在频域和时域均不展宽, 4 采用特殊的方式使相同码元携带更多的信息—光CDMA 光纤接入,光通信,光网络,光缆接入光纤接入,光通信,光网络,光缆接入 CDMA是基于WDM和TDM之上的一种多路存取方式。它可以使相同带宽和比特率的光信号携带更多的信息。光纤CDMA(OCDMA)中的每一位数据都被一个序列编码,每个用户都有一个单独的序列。OCDMA适合于多用户操作,它的主要限制因素是用户间的干扰。OCDMA适合于突发业务系统,可在光领域完成网络功能处理,比如选择地址和路由。利用光处理和异步传输的优势和突发环境业务下的多用户接入能力,OCDMA在LAN应用方面显示出明显优势。
|
超高速光纤通信系统<2> | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
世界各国都斥巨资研究超高速光纤通信系统,已报道的实验系统的传输速率已超过3 Tbit/s量级,表1列出了世界各国几年来比较有特点的实验系统。
光纤通信系统的飞速发展,使超高速的数据传输成为可能。在未来的传输系统中,必然是多种技术并存,光WDM、OTDM、孤子、CDMA都将占据一定的地位。在LAN中,OTDM和CDMA都显示出其优越性。光时分复用和波分复用相结合在长距离传输中是比较有吸引力的方式,既可提高单信道的码速率和每赫兹的频带利用率,又可充分利用光纤的巨大带宽资源。而在WDM 和OTDM中,都可以采用孤子来传输,同时利用CDMA技术使相同的码流携带的信息成倍提高。由于新技术的不断涌现,对光纤的巨大带宽的充分利用已成为指日可待的事。 |
欢迎光临 千家论坛_智能建筑与智能家居技术交流社区 (http://bbs.qianjia.com/) | Powered by Discuz! X3.2 |