那位高手可以讲解一下高频干扰的原理(比喻电梯\逆变器等),在画面是何表现?如何解决啊?
希望技术性强些,专业一点,谢谢!
“干扰”一直是监控工程设计和施工中的一个令人头疼的“心病”。我们愿与业界朋友一起努力,共同向这一工程难题发起挑战。这里把 “eie实验室”的初步研究成果正式向业界公开,抛砖引玉,供大家研究实践,共同提高。
一、 同轴电磁干扰传统理论与认识
1. 穿过缝隙论:干扰电磁场透过同轴电缆的外导体屏蔽层缝隙或屏蔽层破损处,辐射到、耦合到、感应到芯线上,从而形成干扰的。
2. 趋肤深度穿透论:视频干扰的低频段,计算电磁波的趋肤深度大于屏蔽层厚度,所以仍会穿透屏蔽层;
3. 在这些理论和认识指导下,同轴电缆的结构逐渐变化:从原来只有一个编织层的单屏蔽层同轴电缆,发展到一层铝箔加一层编织网的双屏蔽电缆,继而发展到“铝箔+编织网+铝箔+编织网”的“四屏蔽同轴电缆”,力求形成了一个“又厚又无缝”的外导体屏蔽层。但即使这样,当工程中电缆很长时,还会有干扰产生。于是人们觉得,同轴电缆是一种抗干扰性能不太好传输线。
二、 对电磁干扰形成机制重新认识
eie实验室通过实验和理论分析,对外部干扰电磁场在同轴电缆传输系统中产生干扰的形成机制,初步形成了以下认识:
1. 干扰”穿透”论依据似乎不足。视频信号的上边频为6MHz,波长50米。50Hz干扰电磁波的波长为6百万米或6000Km.电磁理论与实践表明,当网状导体孔隙直径小于1/10波长时,电磁波的穿透功率基本可以忽略;一般64编以上的同轴电缆,编织网的平均孔隙大约1毫米左右,远远小于波长,完全可以等效为一个面导体。干扰电磁场在导体表面产生感应电流,表面感应电流又产生相位相反的反电磁场,在导体外表面电场强度始终为零,而感应电流为最大值。又由于电缆外导体直径同样远远小于波长,编织网又是良导体,所以干扰电流在电缆外屏蔽层周围是均匀分布的,即任意一个横截面都是等电位的。电磁场理论和实验也已证明,一个等电位导体圆筒,其内部空间是等电位空间,即在同轴电缆外导体内部空间里,没有干扰产生的交变电磁场。同轴芯线,处在这个等电位空间里,不可能产生干扰感应电动势。从同轴线传输基本理论方面看,信号在同轴线内部的传输,是以存在于内外导体限定的空间内、并以固定模式的场结构方式进行的,外界干扰信号,要进入同轴电缆传输,必须有一种有效的输入结构和激励条件,显然对干扰来说,这是不具备的。所以说干扰”穿透”的理论和实践依据似乎不足。
2. 干扰电磁场在同轴电缆外导体纵向阻抗上产生感应电动势。在充满电磁波的空间环境中,同轴电缆外导体如同一根接收天线(线天线),空间干扰电磁场照样会在外导体表面产生纵向交变感应电流。实际工程中电缆很长,外导体纵向电阻(阻抗)虽然很小,但不为零。于是较强的干扰感应电流,便会在外导体纵向电阻上产生较大的感应电动势。用Vi代表这个实际产生的感应电动势。同理,电缆两端接地,同相地电位差或异相压差环路干扰,也会在外导体纵向电阻上形成干扰电动势。我们统一都用Vi表示这种客观存在的干扰感应电动势。
3. 外界干扰是怎样混到视频信号中的?
同轴电缆,不管具有一层,两层还是四个屏蔽层,电气上都是互相导通的一个同轴外导体屏蔽层,只是具体结构和厚度不同而已。
摄像机输出电压Vo=2Vp-p,输出阻抗为75Ω,同轴电缆内导体等效电阻为Rc, 外导体等效电阻为Rd, Vi是干扰在同轴外导体纵向电阻上形成的感应电动势(大小正比于Rd,严格讲正比于纵向电抗Zd),末端设备对传输线来说是一个Rh=75Ω匹配负载。显然,终端负载Rh从传输回路中取得的信号电压,是视频信号Vo和干扰电动势Vi共同作用的结果。
Vab=(Vo ×75)÷[75×2+Rc+Rd)] + (Vi×75) ÷[75×2+Rc+Rd)]
其中,第一项为负载获得的有效视频信号
Voh=(Vo ×75)÷[75×2+Rc+Rd)],
第二项为负载获得的有效干扰信号
Vih =(Vi×75) ÷75×2+Rc+Rd)
当电缆很短时,内外导体电阻可以忽略,Rc+Rd=0,这时,有效视频信号
Voh=(Vo ×75)÷75×2+0)= Vo ×75÷75×2= Vo/2=1Vp-p;
因为干扰感应电动势Vi正比于(Rc+Rd),此时Vi=0,Vih =0;
值得注意的是干扰信号Vi是由电缆纵向分布参数(阻抗或电阻)决定的,不是一个集中的点信号源,重要的是它串联在视频信号传输回路中,负载在取得摄像机视频信号的同时,也必然取得干扰信号。干扰的性质属于“加性干扰”,不管视频信号有没有,它始终存在。
1. 同轴电缆外导体屏蔽性能分析:
同轴电缆外导体,既是视频信号地,同时也是有效抵抗电磁干扰的屏蔽层。外界电磁场充斥着所有空间,只是有强弱之分,只要在具体应用场合里,干扰电动势与有用信号比小到可以忽略,就可以认为没有干扰。同轴电缆外导体面积很大,阻抗很低,大部分干扰形成的感应电动势都可以忽略,这就是它的屏蔽作用。有线电视系统采用公用调频广播与通信波段作为增补频道,用同轴系统进行远距离传输,而相互没有干扰,就是同轴电缆具有优异屏蔽性能的实践验证。反方面的例证是,在监控工程中,因同轴电缆屏蔽网断裂,或电缆头接触不良等,都会造成外导体阻抗增大,使原来可以忽略的弱干扰,变成了不能忽略的强干扰。我们把这种本不应该产生却又在具体工程中冒出来的干扰叫做“失误干扰”,“失误干扰”产生的概率很大,约占工程干扰总数的一半到一多半。
共同探讨。
经典 学习中
本文转载自:中华视频网( http://www.chinavideo.org )
变电站的监控系统较之其他监控系统更易产生各种干扰,干扰源会通过传输线缆进入监控系统,造成视频图像质量下降、系统控制失灵、运行不稳定等现象。因此研究变电站视频监控干扰源的性质、了解对视频监控系统的影响方式,以便采取措施解决干扰问题,对提高视频监控系统工程质量,确保系统的稳定运行非常有益。
第一种是模拟视频信号,传输路径由摄像机到矩阵,从矩阵到多画面处理器,再到采集终端计算机;
第二种是数字信号,包括采集终端计算机与矩阵、多画面处理器、摄像机之间的控制信号传输,矩阵中计算机部分的数字信号,温度、湿度等环境检测数字信号,报警开关量信号等。
一般来说干扰主要通过视频同轴电缆和传输控制信号的双绞线耦合进系统。
高频噪声干扰,比如大电感负载启停;各点接地电位不等引入的工频干扰;平衡传输线路失衡使抑噪能力下降将工频干扰转成了差模干扰;传输线上阻抗不匹配造成信号的反射使信号传输质量下降;静电放电沿传输线进入设备造成接口芯片损伤或损坏。
视频同轴电缆由于阻抗不匹配造成的影响在视频图像上表现为重影。视频同轴电缆接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图像产生雪花噪点、网纹干扰以及横纹滚动等。在控制信号传输线阻抗不匹配会将在脉冲序列的前后沿形成震荡,震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。控制信号平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误,比如计算机的死机,网络接口的错误等。
下面就变电站视频监控系统中常见的干扰及解决方法进行些探讨:
变电站视频监控系统的数字信号传输通常通过工业标准的通信网络进行传输,比如RS232、RS845、RS422。在这里重点讨论RS485数字通信抗干扰方法。
RS485总线是采用差分平衡电气接口,具有较强的抗电磁干扰能力,但在实际工程中RS485总线并未达到人们期望的效果。问题往往出现在以下几个方面:
·网络拓扑不合理,未按照总线型网络拓扑布线,而成为了星型拓扑结构;
·传输线与接收和发送端设备连接不正确,削弱了平衡线的抗干扰能力;
·公用双绞线未进一步采取抗干扰措施,比如采用屏蔽双绞线;
·双绞线线经太细,传输距离太远,导致阻抗太大,造成压降。
虽然在造成干扰的方式上有所不同但在干扰的表现形式上只有两种:一种是在信号传输线上控制信号反射增加了信号畸变程度;一种是由于外部的干扰使平衡条件被破坏,共模干扰变成了串模信号进入传输线。
关于信号反射,根据电磁理论,减少长线上信号反射的唯一途径是阻抗匹配,若通信网络拓扑为总线型,阻抗匹配比较容易实现,但若是星型网络拓扑,在发送端串上与传输线特征阻抗相同的电阻(电阻值一般是驱动门输出内阻的5倍以上)就可以得到较高的发送电平。接收的匹配阻抗是经5伏电源形成的,在阻抗匹配的同时减少了吸收功耗,这样既减少了反射,又不会因为增加了匹配电阻吸收过多的信号功率,信号的电平阈值差变小。
双绞线作为RS485传输线对电磁感应噪声有较强的抑制能力,但对静电感应引起噪声的抑制能力较差,因此RS485传输线应选用屏蔽双绞线。双绞线的屏蔽层要正确接地,这里讲的“地”应是驱动总线逻辑门的“地”,而非“机壳地”、“保护地”,但在许多实际设备上往往没有给出接地连接端,所以在这种情况下就需要引一条线将屏蔽与驱动逻辑门集成电路的地相连。
此外,在选择屏蔽双绞线作为RS485通信线时,应该选择线经大一点的,使阻值比较小,产生的压降小,这样使得控制信号的衰减也会小很多。
视频信号的干扰在图像上表现为雪花点和50Hz横纹滚动。
对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄像机与控制矩阵之间合理位置增加一个视频放大器,将视频信号的信噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。
较难解决的是50Hz横纹滚动及进一步加入的高频干扰的情况。对于50Hz的横纹滚动根据电磁学理论知道视频电缆的屏蔽层可完全消除50Hz工频干扰,只需要购买屏蔽效果好的视频电缆。对于图像的高频干扰,因它的频带仍在8兆Hz内,采用空隙率为50%左右的屏蔽网可基本消防高频干扰,但要达到50%的空隙率,屏蔽网根数需每个波长长度有60根以上,这样高的密度又会使电缆的柔韧性下降,比较好的方法是采用带有双层屏蔽的视频电缆。
视频电缆屏蔽层要接地,如果视频信号“地”与显示器的“地”相对“电网地”的电位不同,那么通过电源在摄像与显示器之间形成电源回路,这样50Hz的工频干扰会进入显示器中,从电气联接可以看出消除50Hz工频干扰的方法有两种,一是想办法使各处的“地”电位与“电网地”的电位差完全相同,或者是切断形成地环流的路径。由于工程环境比较复杂,使各处“地”等电位会比较困难,只能通过加大摄像供电线缆的线径,尽可能降低地回路的电阻,比如采用铠装电缆,或者采用切断地环流回路的方法,在摄像或显示器端有一端不接地,通常在显示器端不接供电电源的地,这样虽不能完全消除干扰但可减少50Hz的干扰。
从上面的分析中看到,如果电源线上耦合上高频噪声,即使视频电缆的屏蔽电缆的屏蔽再好,也会将噪声送至显示器,因此摄像机的供电电源线最好也要屏蔽,上述措施需要在工程设计和施工时就要全面考虑才能实现。若到了系统调试时发现干扰存在可采用调制和解调的方法将噪声滤除,在摄像机端加一个调制器将视频信号搬移到几十兆赫兹的频段上,在计算机端加一个低通滤波器将低于8MHz信号全部滤除,再经过解调将视频图像还原。
监控系统的供电方式只有两种:一种是集中供电方式即电源都引自一处,另一种是分布式供电,摄像机在安装位置就近取电。从抗干扰效果的角度讲,集中供电方式更好一些,可以基本消除各处参考电位不等的情况。
总的来说解决问题的关键在于工程开始施工时就要全盘考虑抗抗干扰措施,这样才能从根本上解决干扰问题,而不要等到工程后期再亡羊补牢。
本文转载自:中华视频网( http://www.chinavideo.org )
欢迎光临 千家论坛_智能建筑与智能家居技术交流社区 (http://bbs.qianjia.com/) | Powered by Discuz! X3.2 |